Problem Statement
An American supplemental insurance major need to deal with fraudulent cases in ever-increasing claims transactions. The insurer was largely dealing the fraudulent activities with a rule-based approach of manual processing and investigation (driven by expert judgement of agents, investigators and auditors). They wanted to move to a more scientific approach leading to strategizing the next generation Fraud Analytics System.
Solution Overview
- Machine learning-based predictive model devised.
- Implementing feature engineering techniques
- Segmentation to detect patterns
- Supervised learning on specific clusters to measure its strengths and further strengthen the model
- Tool stack used: Python, Splunk
Outcomes
- 500 basis points increase in the accuracy of Fraud detection.
- Moving from rule-based fraud identification to automated way using Machine Learning
